If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36x^2+15x-6=0
a = 36; b = 15; c = -6;
Δ = b2-4ac
Δ = 152-4·36·(-6)
Δ = 1089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1089}=33$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-33}{2*36}=\frac{-48}{72} =-2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+33}{2*36}=\frac{18}{72} =1/4 $
| X^2+8n+3=0 | | -5x-48=22 | | x/5-17=-24 | | 3(-2x)=-6x | | 25^7x+22=125 | | 2t-20=16 | | 63=Lx7 | | 20z-18=14z | | 18v-3=17v+2 | | 13v+9=20v-12 | | 11b-3=12b-8 | | 11b-3=12-8 | | 11b-3=12 | | |4u+14|=-6 | | t+20=3t | | z-15=18 | | 9w^2+1=-9w | | 4x-11=x | | y=4(-6)+12 | | 63t^2-29t-4=0 | | -13=9/r+8 | | 9x^2=6x+17 | | -5(1-b)=15 | | X(x-33)=280 | | 7x+40/8=2 | | 18+4.50h=12+5.75 | | a^2+10a=600 | | a^2+10a=20 | | 10x+-15=4x | | 10w^2+3w-7=0 | | 1/4=16x | | w(10w+3)-7=0 |